Einzelnen Beitrag anzeigen
  #79  
Alt 06.10.15, 20:31
Plankton Plankton ist offline
Guru
 
Registriert seit: 02.01.2015
Beitr?ge: 915
Standard AW: Planktons schwimmende Schildkröten und fliegende Spaghettimonster

The physicists arrived at this result by showing that, in general, any nonzero amount of coherence in a system can be converted into an equal amount of entanglement between that system and another initially incoherent one. This discovery of the conversion between coherence and entanglement has several important implications. For one, it means that quantum coherence can be measured through entanglement. Consequently, all of the comprehensive knowledge that researchers have obtained about entanglement can now be directly applied to coherence, which in general is not nearly as well-researched (outside of the area of quantum optics). For example, the new knowledge has already allowed the physicists to settle an important open question concerning the geometric measure of coherence: since the geometric measure of entanglement is a "full convex monotone," the same can be said of the associated coherence measure. As the scientists explained, this is possible because the new results allowed them to define and quantify one resource in terms of the other.

"The significance of our work lies in the fact that we prove the close relation between entanglement and coherence not only qualitatively, but on a quantitative level," coauthor Alex Streltsov, of ICFO-The Institute of Photonic Sciences in Barcelona, told Phys.org. "More precisely, we show that any quantifier of entanglement gives rise to a quantifier of coherence. This concept allowed us to prove that the geometric measure of coherence is a valid coherence quantifier, thus answering a question left open in several previous works."

While the results show that coherence and entanglement are operationally equivalent, the physicists explain that this doesn't mean that are the exact same thing, as they are still conceptually different ideas.


Read more at: http://phys.org/news/2015-06-physici...sides.html#jCp

Sehr interessant!