Quanten.de Diskussionsforum  

Zur?ck   Quanten.de Diskussionsforum > Quantenmechanik, Relativitätstheorie und der ganze Rest.

Hinweise

Quantenmechanik, Relativitätstheorie und der ganze Rest. Wenn Sie Themen diskutieren wollen, die mehr als Schulkenntnisse voraussetzen, sind Sie hier richtig. Keine Angst, ein Physikstudium ist nicht Voraussetzung, aber man sollte sich schon eingehender mit Physik beschäftigt haben.

 
 
Themen-Optionen Ansicht
  #11  
Alt 24.01.20, 15:11
Zweifels Zweifels ist offline
Profi-Benutzer
 
Registriert seit: 26.11.2018
Beitr?ge: 244
Standard AW: Frage zur 4-dimensionalen Raumzeit

Ich mach das jetzt mal auf eine andere Weise, und zwar mit meinem vorher definierten Funktionsvektor.
Ich nehme ein Dreidimensionales Koordinatensystem mit den Achsen x,y und z und beschreibe darin eine halbe Kugeloberfläche mit einem Radius r folgendermassen:
x = Wurzel (r²-z²)
y = Wurzel (r²-z²)
z := r = Wurzel (x²+y²+z²)
Ich nehme also erst zwei Koordinatensysteme an (xz und yz) und beschreibe mit allen möglichen z jeweils einen Halbkreis.
Dann nehme ich ein xyz Koordinatensystem an. Ich weiss, dass darin ein Punkt auf der Halbkugel auch r von z=0 entfernt liegt. Weiterhin weiss ich, dass ein Punkt P im xy Koordinatensystem P = Wurzel (x²+y²) vom Ursprung entfernt liegt. Wenn dieser Punkt P aber auf der Halbkugel liegen soll, muss er noch in z-Richtung eine Entfernung haben, die aber durch den Radius r definiert wird.
Dann leite ich alle Funktionen nach z ab und bekomme meine Mannigfaltigkeit.

Wer von euch könnte überprüfen, ob das stimmt und in wie weit stimmt es mit unsere Mathematik überein?
 

Lesezeichen

Themen-Optionen
Ansicht

Forumregeln
Es ist Ihnen nicht erlaubt, neue Themen zu verfassen.
Es ist Ihnen nicht erlaubt, auf Beitr?ge zu antworten.
Es ist Ihnen nicht erlaubt, Anh?nge hochzuladen.
Es ist Ihnen nicht erlaubt, Ihre Beitr?ge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.

Gehe zu


Alle Zeitangaben in WEZ +1. Es ist jetzt 16:56 Uhr.


Powered by vBulletin® Version 3.8.8 (Deutsch)
Copyright ©2000 - 2024, vBulletin Solutions, Inc.
ScienceUp - Dr. Günter Sturm