Quanten.de Diskussionsforum  

Zurück   Quanten.de Diskussionsforum > Quantenmechanik, Relativitätstheorie und der ganze Rest.

Hinweise

Quantenmechanik, Relativitätstheorie und der ganze Rest. Wenn Sie Themen diskutieren wollen, die mehr als Schulkenntnisse voraussetzen, sind Sie hier richtig. Keine Angst, ein Physikstudium ist nicht Voraussetzung, aber man sollte sich schon eingehender mit Physik beschäftigt haben.

Antwort
 
Themen-Optionen Ansicht
  #1  
Alt 13.01.22, 10:32
schmiereck schmiereck ist offline
Aufsteiger
 
Registriert seit: 25.04.2017
Beiträge: 34
Standard Elektrisches Feld eines Elektrons

Hallo,

eine Frage zum Elektron, bzw. zu seinem elektrischem Feld.
Das elektrische Feld eines Elektrons verteilt sich über einen Raumbereich.
Ich habe gelernt, das die Feldstärke gleichzeitig der Aufenthaltswahrscheinlichkeit des Elektrons an den verschiedenen Orten des Feldes entspricht.

a. Stoßen sich die Felder (Feldlininen) eines Elektrons untereinander ab?
Soll heißen, sorgt das dann (auch) mit dafür, das sich die Aufenthaltswahrscheinlichkeit des Elektrons im Raum verteilt?

b. Wenn ich ein Elektron durch einen Doppelspalt schicke und danach wieder in Nachbarschaft bringe,
stoßen sich dann die zwei Elektronen(-Wellen) ab und beeinflussen die Bahnen?

Ich muss zugeben, das ich mir das Feld eines Elktrons gerne als eine "Wolke" aus Punktteilchen mit jeweils verschiedener "Stärke" (Wahrscheinlichkeit) vorstelle.
Das fällt mir einfacher, als mir ein koninuierliches Feld vorzustellen.
Ich glaube aber für die Beantwortung der Fragen spielt das keine Rolle.

Und noch eine Frage die nicht unbedingt etwas mit a. und b. zu tun hat -
c. Warum verteilt sich die Aufenthaltswahrscheinlichkeit des Elektrons nicht mit Lichtgeschwindigkeit gleichmässig im Raum?
Welcher Effekt sorgt dafür, dass es scheinbar auf Dauer einen Ort mit erhöhter Aufenthaltswahrscheinlichkeit umgeben von einem kontinuierlichen Abfall gibt.
In einem reinen, an einem Ort angeregten Feld, würde die Anregung doch auseinander laufen und sich in der Unendlichkeit verteilen.

Gruß, Thomas

Geändert von schmiereck (16.01.22 um 04:49 Uhr)
Mit Zitat antworten
  #2  
Alt 13.01.22, 15:00
Hawkwind Hawkwind ist offline
Singularität
 
Registriert seit: 22.07.2010
Ort: Rabenstein, Niederösterreich
Beiträge: 2.868
Standard AW: Elektrisches Feld eines Elektrons

Zitat:
Zitat von schmiereck Beitrag anzeigen
..
Ich habe gelernt, das die Feldstärke gleichzeitig der Aufenthaltswahrscheinlichkeit des Elektrons an den verscjhiedenen Orten des Feldes entspricht.
..
Ich denke nicht, dass das richtig ist, was du da gelernt hast. Wo hast du das her?
Die Aufenthaltswahrscheinlichkeit eines Elektrons (Betragsquadrat der quantenmechanischen Wellenfunktion) hat nicht viel mit dem elektrischen Feld des Elektrons zu tun.
Nimm zum Beispiel ein freies Elektron: das Feld ergibt sich aus dem elektrostatischen Coulomb-Potenzial und ist dem Betrage nach gegeben durch

also quadratisch abnehmend mit der Entfernung vom Elektron.

Die Aufenthaltswahrscheinlichkeit dagegen wird durch den quantenmechanischen Zustand des Elektrons bestimmt. Kennen wir seinen Impuls genau, dann "verschmiert" die Wellenfunktion (und damit die Aufenthaltswahrscheinlichkeit) über den gesamten Raum des Universum. Kennen wir dagegen seinen Ort genau (und wissen nichts über seinen Impuls), dann ist die Aufenthaltswahrscheinlichkeit ein Peak am Ort des Elektrons und überall sonst Null.

Gruß,
Uli

Geändert von Hawkwind (13.01.22 um 15:05 Uhr)
Mit Zitat antworten
  #3  
Alt 13.01.22, 15:51
schmiereck schmiereck ist offline
Aufsteiger
 
Registriert seit: 25.04.2017
Beiträge: 34
Standard AW: Elektrisches Feld eines Elektrons

Hallo Uli,

ich habe gerade noch einmal nachgeschaut und Du hast Recht -
das wurde mir einmal bezüglich des Photons und seine elektromagtischen Welle so gesagt, das Aufenthaltswahrscheinlichkeit des Photons und die Elektromagtische-Wellenfunktion ein und das selbe sei.
Das dies beim Elektron das gleiche ist, habe ich selber so interpretiert.

Stimmt denn dann aber die Aussage für das Photon so?
Mit Zitat antworten
  #4  
Alt 13.01.22, 15:58
Benutzerbild von TomS
TomS TomS ist offline
Singularität
 
Registriert seit: 04.10.2014
Beiträge: 2.917
Standard AW: Elektrisches Feld eines Elektrons

Zitat:
Zitat von schmiereck Beitrag anzeigen
Hallo Uli,

ich habe gerade noch einmal nachgeschaut und Du hast Recht -
das wurde mir einmal bezüglich des Photons und seine elektromagtischen Welle so gesagt, das Aufenthaltswahrscheinlichkeit des Photons und die Elektromagtische-Wellenfunktion ein und das selbe sei.
Das dies beim Elektron das gleiche ist, habe ich selber so interpretiert.

Stimmt denn dann aber die Aussage für das Photon so?
Nein, sie stimmt so auch nicht

Den genauen Zusammenhang muss ich aber nachlesen.

Insbs. wird das elektromagnetische Feld in der Quantenmechanik nicht quantisiert sondern weiterhin als klassisch betrachtet; demzufolge gibt es keine Wellenfunktion und keine Aufenthaltswahrscheinlichkeit. Umgekehrt wird das Feld zwar in der QED quantisiert, jedoch in einem völlig anderen Formalismus, der keine Wellenfunktionen enthält.
__________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
Mit Zitat antworten
  #5  
Alt 13.01.22, 16:22
Benutzerbild von TomS
TomS TomS ist offline
Singularität
 
Registriert seit: 04.10.2014
Beiträge: 2.917
Standard AW: Elektrisches Feld eines Elektrons

Ich habe das hier gefunden jedoch nicht im Detail gelesen:

https://arxiv.org/pdf/quant-ph/0508202.pdf
PHOTON WAVE FUNCTION

https://arxiv.org/ftp/arxiv/papers/0708/0708.0831.pdf
Photon wave functions, wave-packet quantization of light, and coherence theory

On the Quantum-Mechanics of a Single Photon
https://arxiv.org/pdf/1801.00268.pdf

https://en.wikipedia.org/wiki/Rieman..._wave_function

Jedenfalls entspricht die Wellenfunktion einem Spin-1 Spinor, die Schrödingergleichung dann einer Art Dirac-Gleichung. Tatsächlich wird die Wellenfunktion direkt aus dem elektromagnetischen Feld konstruiert.

Um das oben Gesagte
Zitat:
Zitat von TomS Beitrag anzeigen
1) Insbs. wird das elektromagnetische Feld in der Quantenmechanik nicht quantisiert sondern weiterhin als klassisch betrachtet; demzufolge gibt es keine Wellenfunktion und keine Aufenthaltswahrscheinlichkeit. 2) Umgekehrt wird das Feld zwar in der QED quantisiert, jedoch in einem völlig anderen Formalismus, der keine Wellenfunktionen enthält.
einzuordnen:

Diese Wellenfunktion entspricht der Wellenfunktion im Rahmen der Quantenmechanik; der Punkt (1) ist damit gelöst; aus der Wellenfunktion folgt eine Art Dichte ähnlich wie bei der Dirac-Gleichung. Zur mikroskopischen Beschreibung eine Wechselwirkung mit Materie benötigt man jedoch die QED (2); ich habe nichts gefunden, was auf eine Quantenfeldtheorie auf Basis dieses Formalismus hindeutet, aber ausgeschlossen ist das nicht; diese QFT müsste letztlich eine algebraische Umformulierung der QED mittels Dirac-Spinor für das Elektronfeld und einem Spin-1 Feld für das elektromagnetische Feld sein; zur Äquivalenz wird jedoch noch das Viererpotential benötigt und das fehlt in dem Ansatz; insofern fehlen wesentliche Aspekte, die man von Photonen eigentlich erwartet.
__________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.

Geändert von TomS (13.01.22 um 16:37 Uhr)
Mit Zitat antworten
  #6  
Alt 13.01.22, 16:49
Hawkwind Hawkwind ist offline
Singularität
 
Registriert seit: 22.07.2010
Ort: Rabenstein, Niederösterreich
Beiträge: 2.868
Standard AW: Elektrisches Feld eines Elektrons

Zitat:
Zitat von schmiereck Beitrag anzeigen
Hallo Uli,

ich habe gerade noch einmal nachgeschaut und Du hast Recht -
das wurde mir einmal bezüglich des Photons und seine elektromagtischen Welle so gesagt, das Aufenthaltswahrscheinlichkeit des Photons und die Elektromagtische-Wellenfunktion ein und das selbe sei.
Das dies beim Elektron das gleiche ist, habe ich selber so interpretiert.

Stimmt denn dann aber die Aussage für das Photon so?
Beim Photon gibt es sicher einen engeren Zusammenhang zwischen elm. Feld und Wahrscheinlichkeitsdichte: ein Photon "ist" ja quasi das elm. Feld, eine völlige Gleichsetzung von beidem ist aber sicher problematisch. Da teile ich Toms Bedenken.
Allein schon der Messprozess würde mir Bedenken machen; die Wellenfunktion verhält sich dabei instantan und nichtlokal, was für ein physikalisches Feld ausgeschlossen ist.

Geändert von Hawkwind (13.01.22 um 16:53 Uhr)
Mit Zitat antworten
  #7  
Alt 14.01.22, 07:12
schmiereck schmiereck ist offline
Aufsteiger
 
Registriert seit: 25.04.2017
Beiträge: 34
Standard AW: Elektrisches Feld eines Elektrons

Uli und TomS,
erst einmal vielen Dank für die Überlegungen und Hinweise von euch.
Ich weiß, dass es anstrengend ist, mit mir über diese Themen zu sprechen da ich der Mathematik nicht immer folgen kann.
Ich versuche aber einige Fragen für mich zu beantworten und eure Einlassungen sind für mich dabei hilfreich. Ich brauche aber natürlich eure Hilfe bei der Interpretation der QED und QFT Theorien.

Für meine Sicht sehe ich noch keinen Wiederspruch -
die Entwicklung der Wellenfunktion für die Aufenthaltswahrscheinlichkeit für das Elektron "verschmiert" entlang seines Weges entsprechend seines Impulses (Ort und Zeit)
UND ist äquivalent zu der Stärke seines elektrischen Feldes die es dort zu jedem Zeitpunkt und an jedem Ort "hätte".
Wenn die Wellenfunktion auf eine Barriere (negativ geladenes Irgendwas) trifft, wird ja das elektrische Feld "abgelenkt" und damit auch die Aufenthaltswahrscheinlichkeit für das Elektron in und hinter der Barriere geringer.

Die Stärke des elektrischen Feldes, welches ich messe (also für einen bestimmten Punkt zu einer bestimmten Zeit), würde dann der Aufenthaltswahrscheinlichkeit des Elektrons an diesem Ort und zu dieser Zeit entsprechen.

Für die "Messung" setze ich (oder das Elektron, je nach Sichtweise) den Impult auf einen bestimmten Wert (oder auf null) und entferne ihn damit aus der Funktion für die Aufenthaltswahrscheinlichkeit.
Es würde mich überraschen, wenn das, was übrig bleibt, nicht die Aufenthaltswahrscheinlichkeit des Elektrons zu diesem Zeit und Punkt wäre
und dieser "Rest" nicht der elektrischen Feldstärke entsprechen würde.
Würde dann nicht die elektrische Feldstärke der Wellenfunktion eines an diesem Raumzeit-Punktes "ruhenden" Elektrons entsprechen?

Geändert von schmiereck (14.01.22 um 08:03 Uhr)
Mit Zitat antworten
  #8  
Alt 14.01.22, 08:15
Bernhard Bernhard ist offline
Moderator
 
Registriert seit: 14.06.2017
Beiträge: 1.863
Standard AW: Elektrisches Feld eines Elektrons

Zitat:
Zitat von schmiereck Beitrag anzeigen
Die Stärke des elektrischen Feldes, welches ich messe (also für einen bestimmten Punkt zu einer bestimmten Zeit), würde dann der Aufenthaltswahrscheinlichkeit des Elektrons an diesem Ort und zu dieser Zeit entsprechen.
Die Stärke des elektrischen Feldes wird bei einem einzelnen Photon iR nicht mehr gemessen, sondern das Photon dann direkt mit einer gewissen Wahrscheinlichkeit detektiert. So etwas ist innerhalb der Quantenoptik heute Standard.

Ganz grob ist es erstmal nicht verkehrt, die aus der Quantenmechanik bekannten Eigenschaften des Elektrons, wie Interferenz auch auf ein einzelnes Photon zu übertragen.

Problematisch wird diese Vorstellung erst bei Überlegungen zu Vakkuumzuständen, die sich dann aber auch auf ein Feld mit vielen Photonen beziehen. Da muss man dann das Photon auch als Bose-Teilchen betrachten mit der zugehörigen Statistik.
__________________
Freundliche Grüße, B.
Mit Zitat antworten
  #9  
Alt 14.01.22, 10:32
Hawkwind Hawkwind ist offline
Singularität
 
Registriert seit: 22.07.2010
Ort: Rabenstein, Niederösterreich
Beiträge: 2.868
Standard AW: Elektrisches Feld eines Elektrons

Zitat:
Zitat von schmiereck Beitrag anzeigen
Die Stärke des elektrischen Feldes, welches ich messe (also für einen bestimmten Punkt zu einer bestimmten Zeit), würde dann der Aufenthaltswahrscheinlichkeit des Elektrons an diesem Ort und zu dieser Zeit entsprechen.
Nein, nehmen wir an, wir haben ein lokalisiertes Elektron (d.h. eines dessen Ort zuvor gemessen wurde), dann ist das elektrische Feld im Abstand r durch das Coulomb-Feld gegeben (siehe mein Posting oben), aber seine Aufenthaltswahrscheinlichkeit im Abstand r ist Null (sein Ort ist "scharf"). Ist also keinesfalls dasselbe.
Mit Zitat antworten
  #10  
Alt 14.01.22, 12:03
Benutzerbild von Geku
Geku Geku ist gerade online
Guru
 
Registriert seit: 09.06.2021
Beiträge: 716
Standard AW: Elektrisches Feld eines Elektrons

Eine genau Ortsbestimmung setzt voraus, dass das Elektron ein punktförmiges Objekt darstellt.

Das wird aber durch zweierlei verhindert:
  1. durch die Heisenbergsche Unschärferelation
  2. durch die endliche Energie des elektrischen Feldes

Diese Energie ergibt sich aus dem Produkt des elektrischen Potentials mit der elektrischen Ladung. Das elektrischen Potentials ist das Integral des elektrischen Feldes vom (klassischen ) Elektronenradius bis ins Unendliche. Das elektrische Feld nimmt mit Quadrat der Entfernung ab.

Je weiter man in den Mikrokosmos blicken will, umso höhere Energien müssen angewendet werden. Siehe Cern LHC.
__________________
MFG GEKU

Geändert von Geku (14.01.22 um 12:29 Uhr)
Mit Zitat antworten
Antwort

Lesezeichen

Stichworte
elektromagnetismus, elektron, feldgleichungen

Themen-Optionen
Ansicht

Forumregeln
Es ist Ihnen nicht erlaubt, neue Themen zu verfassen.
Es ist Ihnen nicht erlaubt, auf Beiträge zu antworten.
Es ist Ihnen nicht erlaubt, Anhänge hochzuladen.
Es ist Ihnen nicht erlaubt, Ihre Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.

Gehe zu


Alle Zeitangaben in WEZ +1. Es ist jetzt 07:10 Uhr.


Powered by vBulletin® Version 3.8.8 (Deutsch)
Copyright ©2000 - 2022, vBulletin Solutions, Inc.
ScienceUp - Dr. Günter Sturm