Quanten.de Diskussionsforum  

Zurück   Quanten.de Diskussionsforum > Quantenmechanik, Relativitätstheorie und der ganze Rest.

Hinweise

Quantenmechanik, Relativitätstheorie und der ganze Rest. Wenn Sie Themen diskutieren wollen, die mehr als Schulkenntnisse voraussetzen, sind Sie hier richtig. Keine Angst, ein Physikstudium ist nicht Voraussetzung, aber man sollte sich schon eingehender mit Physik beschäftigt haben.

Antwort
 
Themen-Optionen Ansicht
  #1  
Alt 08.10.21, 08:28
Culpa Culpa ist offline
Aufsteiger
 
Registriert seit: 01.10.2021
Beiträge: 53
Standard Einstein Universe

Können wir bitte mal ein bisschen über das "Einstein Universe" sprechen, also das Model des Universums, das Einstein 1917 angenommen hat und das statisch ist?

In Wikipedia
https://en.m.wikipedia.org/wiki/Static_universe
(Link von Bernhard im anderen Thread)
steht zB., dieses Universum ist "closed" und hat eine positive Krümmung. Wie kann ich mir das vorstellen?

Braucht man für diese "closedness" unbedingt höhere Dimensionen?

Bedeutet diese "closedness", dass ich, wenn ich immer in eine Richtung fliege, am Startpunkt wieder ankomme?

Oder hat es nur mit "Freiheit von Löchern" zu tun, so topologisch?
Mit Zitat antworten
  #2  
Alt 08.10.21, 09:03
Geku Geku ist offline
Profi-Benutzer
 
Registriert seit: 09.06.2021
Beiträge: 395
Standard AW: Einstein Universe

Man braucht den Raum nur um eine Dimension reduzieren.

Dann ist das Universum eine Kugeloberfläche. Diese Fläche ist unbegrenzt, aber nicht unendlich!
Der Radius der Kugel ist die Zeit.
Die Oberfläche expandiert mit der Zeit.

Innehalb der Kugel liegt die Vergangenheit, der Mittelpunkt ist der Urknall mit dem Beginn der Zeit (T=0). Die Kugeloberfläche ist die Gegenwart, außerhalb der Kugel liegt die Zukunft.

Licht bewegt sich auf einer Fläche tangential zur Kugeloberfläche. Die Zeit bleibt für die Lichtwelle stehen (da die Fläche senkrecht zur Zeitachse steht).
__________________
Geschichte wiederholt sich, aber immer anders

Geändert von Geku (08.10.21 um 09:09 Uhr)
Mit Zitat antworten
  #3  
Alt 08.10.21, 09:22
Culpa Culpa ist offline
Aufsteiger
 
Registriert seit: 01.10.2021
Beiträge: 53
Standard AW: Einstein Universe

Hm... Stimmt das so? Ist das Einsteins Modell?

Dieses Modell ist nicht so wirklich eine Reduktion der Dimensionen, denn die Erdoberfläche krümmt sich ja innerhalb einer dritten räumlichen Dimension. Also diese Art Krümmung funktioniert nicht ohne zusätzliche Dimensionen. Oder?
Hm, Radius und auf der Fläche zwei Koordinaten(wohl Längen und Breitengrade) sind zumindest nicht linear abhängig. Also definieren sie den dreidimensionalen Raum.

Ich steh grade mal wieder auf dem Schlauch.
Mit Zitat antworten
  #4  
Alt 08.10.21, 22:09
Geku Geku ist offline
Profi-Benutzer
 
Registriert seit: 09.06.2021
Beiträge: 395
Standard AW: Einstein Universe

https://de.m.wikipedia.org/wiki/Raumkr%C3%BCmmung

https://m.youtube.com/watch?v=Hl4AqfJUp6c

Die Kugeloberfläche ist im Raum gekrümmt.

Je mehr Masse und Energie im Raum vorhanden ist, umso stärker krümmt sich der Raum.
Je weiter sich das Universum ausdehnt, umso stärker verdünnt sich Energie und Materie, umso kleiner wird die Krümmung. Die Krümmung ist der Kebrwert des Kugelradius.

https://de.m.wikipedia.org/wiki/Kr%C3%BCmmung
__________________
Geschichte wiederholt sich, aber immer anders
Mit Zitat antworten
  #5  
Alt 08.10.21, 22:29
Benutzerbild von TomS
TomS TomS ist gerade online
Singularität
 
Registriert seit: 04.10.2014
Beiträge: 2.764
Standard AW: Einstein Universe

Zitat:
Zitat von Geku Beitrag anzeigen
Die Kugeloberfläche ist im Raum gekrümmt.
Wie oben gesagt kann man das so sehen, aber im Kontext der Riemannschen Geometrie und der ART ist das unnötig. Niemand tut das.

Zitat:
Zitat von Geku Beitrag anzeigen
Je mehr Masse und Energie im Raum vorhanden ist, umso stärker krümmt sich der Raum.
Solange du die Mathematik dahinter nicht verstanden hast, ist die physikalische Abwendung noch nicht spruchreif.

Und du musst mir dazu nichts verlinken, ich habe Physik mit Schwerpunkt theoretische Physik studiert ;-)

Magst du es jetzt verstehen? Dann lies doch bitte mal meinen längeren Beitrag oben durch.
__________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
Mit Zitat antworten
  #6  
Alt 08.10.21, 22:57
Culpa Culpa ist offline
Aufsteiger
 
Registriert seit: 01.10.2021
Beiträge: 53
Standard AW: Einstein Universe

Zitat:
Zitat von TomS Beitrag anzeigen
Wie oben gesagt kann man das so sehen, aber im Kontext der Riemannschen Geometrie und der ART ist das unnötig. Niemand tut das.
Zitat:
Zitat von TomS Beitrag anzeigen
Magst du es jetzt verstehen? Dann lies doch bitte mal meinen längeren Beitrag oben durch.
Ja, gern. Deine Texte sind spitze. Den ersten (S2, S3 etc.) verstehe ich so weit - wenn ich den ersten Satz erst mal überspringe.
Der zweite ist wirklich gut. Aber die Sachlage schwer zu verstehen.

Hat die Mercator-Projektion auch überall den gleichen Wert für die Krümmung, wie die Kugeloberfläche?
Mit Zitat antworten
  #7  
Alt 08.10.21, 23:10
Benutzerbild von TomS
TomS TomS ist gerade online
Singularität
 
Registriert seit: 04.10.2014
Beiträge: 2.764
Standard AW: Einstein Universe

Danke ;-)

Du darfst „verstehen“ nicht mit „anschaulich vorstellen“ verwechseln. Gerade in der Mathematik geht es häufig um abstrakte Strukturen und Zusammenhänge, die anschaulich nicht zugänglich sind.

Zum Beispiel kannst du dir die 2-dim. Kugeloberfläche eingebettet anschaulich vorstellen, aber das ist nicht notwendig. Im Falle eines gekrümmten 3-dim. Raumes ist es auch nicht sinnvoll, denn das kannst du dir ohnehin nie anschaulich vorstellen.
__________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
Mit Zitat antworten
  #8  
Alt 08.10.21, 23:17
Benutzerbild von TomS
TomS TomS ist gerade online
Singularität
 
Registriert seit: 04.10.2014
Beiträge: 2.764
Standard AW: Einstein Universe

Zitat:
Zitat von Culpa Beitrag anzeigen
Hat die Mercator-Projektion auch überall den gleichen Wert für die Krümmung, wie die Kugeloberfläche?
Die Mercator-Projektion alleine liefert nur ein Bild des Globus auf einer flachen Karte. Um Informationen zur Krümmung zu erhalten, benötigst du wiederum die Metrik
__________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
Mit Zitat antworten
  #9  
Alt 08.10.21, 23:19
Geku Geku ist offline
Profi-Benutzer
 
Registriert seit: 09.06.2021
Beiträge: 395
Standard AW: Einstein Universe

Zitat:
Zitat von Culpa Beitrag anzeigen
Dieses Modell ist nicht so wirklich eine Reduktion der Dimensionen, denn die Erdoberfläche krümmt sich ja innerhalb einer dritten räumlichen Dimension.
Die Menschheit hat sehr lange gebraucht sich die Erde als Kugel vorzustellen. Man hat sich die Erde als Scheibe vorgestellt und über die Ränder spekuliert.

Man kann sich nicht vorstellen, dass die Einwohner von Neuseeland am Kopf stehen.

https://www.travelbook.de/fun/interk...der-welt-liegt

https://de.m.wikipedia.org/wiki/Flache_Erde

Auf die Kugelform der Erde könnte man durch den Vergleich der Ausrichtung zweier Lote an weit auseinanderliegen Orten schließen. Die Lote verlaufen nicht mehr parallel. Der Winkel nimmt mit der Entfernung zu. Die Lote verlaufen orthogonal zur Oberfläche.

Wie sieht das bei einer Dimension mehr (Raumzeit) aus?

Könnte es nicht sein, dass die Rotverschiebung ein solcher Hinweis ist?
Je weiter Galaxien entfernt sind umso größer ist die Rotverschiebung.
Wenn die Zeitachse orthogonal zu den Raumachsen steht, dann würde die Zeitachse mit zunehmender Entfernung an Parallelität verlieren, was die Rotverschiebung bewirkt.
__________________
Geschichte wiederholt sich, aber immer anders
Mit Zitat antworten
  #10  
Alt 09.10.21, 08:47
Bernhard Bernhard ist offline
Moderator
 
Registriert seit: 14.06.2017
Beiträge: 1.729
Standard AW: Einstein Universe

Zitat:
Zitat von Geku Beitrag anzeigen
Wie sieht das bei einer Dimension mehr (Raumzeit) aus?
Man kann sich die Winkelsumme in Dreiecken ansehen. Ist diese nicht mehr gleich 180°, hat man keine euklidische Geometrie mehr.
__________________
Freundliche Grüße, B.
Mit Zitat antworten
Antwort

Lesezeichen

Themen-Optionen
Ansicht

Forumregeln
Es ist Ihnen nicht erlaubt, neue Themen zu verfassen.
Es ist Ihnen nicht erlaubt, auf Beiträge zu antworten.
Es ist Ihnen nicht erlaubt, Anhänge hochzuladen.
Es ist Ihnen nicht erlaubt, Ihre Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.

Gehe zu


Alle Zeitangaben in WEZ +1. Es ist jetzt 16:47 Uhr.


Powered by vBulletin® Version 3.8.8 (Deutsch)
Copyright ©2000 - 2022, vBulletin Solutions, Inc.
ScienceUp - Dr. Günter Sturm