Quanten.de Diskussionsforum  

Zur?ck   Quanten.de Diskussionsforum > Quantenmechanik, Relativitätstheorie und der ganze Rest.

Hinweise

Quantenmechanik, Relativitätstheorie und der ganze Rest. Wenn Sie Themen diskutieren wollen, die mehr als Schulkenntnisse voraussetzen, sind Sie hier richtig. Keine Angst, ein Physikstudium ist nicht Voraussetzung, aber man sollte sich schon eingehender mit Physik beschäftigt haben.

Antwort
 
Themen-Optionen Ansicht
  #1  
Alt 16.03.19, 17:16
Simon_St Simon_St ist offline
Newbie
 
Registriert seit: 20.10.2018
Beitr?ge: 21
Standard Eichbosonen

Hallo,
ich möchte das Konzept der Eichbosonen verstehen. Laut Wikipedia und so wie ich es im Physikstudium gelernt habe, stellt man erstmal eine lokale Eichinvarianz fest. Dass der Beobachter z.B. lokal die Rollen von grün, blau und rot in der Quantenchromodynamik vertauschen kann.

Man macht also lokal eine Transformation, die die Physik nicht ändern soll. Damit die Lagrangedichte invariant gegenüber dieser Transformation ist, muss man weitere Terme einführen, die genau ein Eichbosenfeld beschreiben.

Meine Frage: Kann man das Eichbosonenfeld dann auch immer lokal wegtransformieren? Wäre sehr komisch!
Mit Zitat antworten
  #2  
Alt 16.03.19, 17:59
Benutzerbild von TomS
TomS TomS ist offline
Singularität
 
Registriert seit: 04.10.2014
Beitr?ge: 3.124
Standard AW: Eichbosonen

Zitat:
Zitat von Simon_St Beitrag anzeigen
Laut Wikipedia ... stellt man erstmal eine lokale Eichinvarianz fest.
Ich halte diese Herangehensweise für wenig hilfreich, man stellt nämlich überhaupt nichts dergleichen fest. Das Prinzip der lokalen Eichinvarianz ist zunächst lediglich ein mathematisches Hilfsmittel zur Konstruktion funktionierender Theorien. Die lokale Eichinvarianz besagt im wesentlichen, dass die mathematische Formulierung zu viele Freiheitsgrade enthält, die letztlich unphysikalisch sind und eliminiert werden müssen.

Zitat:
Zitat von Simon_St Beitrag anzeigen
Man macht also lokal eine Transformation, die die Physik nicht ändern soll. Damit die Lagrangedichte invariant gegenüber dieser Transformation ist, muss man weitere Terme einführen, die genau ein Eichbosenfeld beschreiben.
Das ist die mathematische Vorgehensweise, jedoch keine physikalische Aussage.

Zitat:
Zitat von Simon_St Beitrag anzeigen
Meine Frage: Kann man das Eichbosonenfeld dann auch immer lokal wegtransformieren? Wäre sehr komisch!
Nein, kann man nicht.

Man muss dies m.E. anders aufziehen.

Stell dir vor, du möchtest die Beschreibung eines freien Teilchens auf einer Kugeloberfläche S² beschreiben. Das ist geometrisch ziemlich kompliziert. Stattdessen schreibst du die Lagrangefunktion des freien Teilchens in drei Dimensionen hin, plus einen Zusatzterm mit Lagrangemultiplikator λ, der die Bewegung des Teilchens auf die Kugeloberfläche reduziert, d.h.

L[S²] = L[R³] + λ(r² - R²)

Letztlich führt dies dazu, dass der zu r kanonisch konjugierte Impuls p verschwindet, d.h. r ~ R, p ~ 0. ~ Bedeutet dabei, dass diese Bedingungen erst nach Aufstellung der Bewegungsgleichungen angewandt werden dürfen, nicht auf L oder H selbst. D.h. λ und r sind unphysikalische Freiheitsgrade, also Hilfsgrößen.

Im Prinzip genau so - jedoch deutlich komplizierter - kann man die QED und die QCD formulieren und quantisieren. Man formuliert die Lagrangedichte so um, dass ein Term

L[QCD] = ... + A₀ G

resultiert.

Offenbar spielt die 0-Komponente A₀ die Rolle des Lagrangemultiplikators, G entspricht dem Gaußschen Gesetz. Im Gegensatz zu λ kann man aufgrund der Eichsymmetrie die Eichung A₀ = 0 wählen, d.h. A₀ eliminieren. Zuvor muss man jedoch die zu A₀ gehörende Euler-Lagrange-Gleichung

G ~ 0

mittels

∂L / ∂A₀ = 0

ableiten.

Der zu A₀ gehörige kanonische Impuls Π₀ ~ 0 verschwindet, da L bzw. der Feldstärketensor F keinen Term ∂₀ A₀ enthält.

Damit reduziert man das Eichfeld auf die räumlichen Komponenten, hat jedoch zusätzlich noch G ~ 0, was dem r² - R² ~ 0 entspricht. D.h. man hat neben dem Lagrangemultiplikator A₀ einen weiteren unphysikalischen Freiheitsgrad, was dem o.g. r ~ R und seinem kanonisch konjugiertem Impuls p ~ 0 entspricht.

Im Gegensatz zu oben ist die Lösung des Gaußschen Gesetzes in der QCD jedoch nicht direkt möglich, da es im wesentlichen die Struktur

DE - J° ~ 0

hat, wobei die kovariante Ableitung D sowie der Farbstrom J° die räumlichen Komponenten der Eichfelder enthält. E ist das chromo-elektrische Feld und trägt außerdem einen SU(3)-Index. In der QED kann man das Gaußsche Gesetz dagegen explizit lösen und erhält dadurch das statische Coulombpotential.

Letztlich eliminiert man dadurch zwei unphysikalische Freigeitsgrade, nämlich A₀ sowie die longitudinalen Photonen bzw. Gluonen und erhält 4 - 2 = 2 physikalische, transversale Polarisationen. Die endgültige Theorie enthält nur noch zwei Eichfeldkomponenten, statt der ursprünglichen vier.
__________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.

Ge?ndert von TomS (16.03.19 um 18:04 Uhr)
Mit Zitat antworten
  #3  
Alt 17.03.19, 07:11
Bernhard Bernhard ist offline
Moderator
 
Registriert seit: 14.06.2017
Beitr?ge: 2.635
Standard AW: Eichbosonen

Zitat:
Zitat von Simon_St Beitrag anzeigen
Meine Frage: Kann man das Eichbosonenfeld dann auch immer lokal wegtransformieren? Wäre sehr komisch!
Wenn man "lokal" so versteht, dass damit ein einzelner Punkt in der Raumzeit zu verstehen ist, so ist das in vielen Fällen wohl möglich, aber wenig nützlich. Die Eichfreiheit wird normalerweise dazu benutzt, um möglichst einfache Feldgleichungen zu erhalten, um dann die Feldpotentiale (angepasst an die jeweilige Anwendung) für alle Punkte möglichst einfach ausrechnen zu können.

Spezielle Eichungen bekommen deshalb ggf. auch Namen, wie z.B. Lorenz- oder Coulomb-Eichung (s.a. Wikipedia) in der Elektrodynamik.
__________________
Freundliche Grüße, B.

Ge?ndert von Bernhard (17.03.19 um 07:53 Uhr)
Mit Zitat antworten
  #4  
Alt 17.03.19, 09:19
Hawkwind Hawkwind ist offline
Singularität
 
Registriert seit: 22.07.2010
Ort: Rabenstein, Niederösterreich
Beitr?ge: 3.057
Standard AW: Eichbosonen

Zitat:
Zitat von Simon_St Beitrag anzeigen
Hallo,
ich möchte das Konzept der Eichbosonen verstehen. Laut Wikipedia und so wie ich es im Physikstudium gelernt habe, stellt man erstmal eine lokale Eichinvarianz fest. Dass der Beobachter z.B. lokal die Rollen von grün, blau und rot in der Quantenchromodynamik vertauschen kann.

Man macht also lokal eine Transformation, die die Physik nicht ändern soll. Damit die Lagrangedichte invariant gegenüber dieser Transformation ist, muss man weitere Terme einführen, die genau ein Eichbosenfeld beschreiben.

Meine Frage: Kann man das Eichbosonenfeld dann auch immer lokal wegtransformieren? Wäre sehr komisch!
Das hieße ja, du könntest die entsprechende Wechselwirkung wegtransformieren, also "nein".

Ich denke, zum Einstieg in lokale Eichtheorien ist eher die simpelste lokale Eichtheorie, die Elektrodynamik, geeignet - siehe z.B.:
https://de.wikipedia.org/wiki/Quantenelektrodynamik

Das Eichboson dort ist das Photon; das lässt sich nicht wegtransformieren. Wie Bernhard schon sagte, bietet es sich in der Elektrodynamik auch mal an, Probleme in bestimmten Eichungen zu untersuchen: in der Coulomb-Eichung z.B. sieht die 0-te Komponente des Eichfeldes wie das vertraute Coulomb-Potenzial aus: https://de.wikipedia.org/wiki/Coulomb-Eichung

Ge?ndert von Hawkwind (17.03.19 um 09:24 Uhr)
Mit Zitat antworten
  #5  
Alt 17.03.19, 11:34
Benutzerbild von TomS
TomS TomS ist offline
Singularität
 
Registriert seit: 04.10.2014
Beitr?ge: 3.124
Standard AW: Eichbosonen

„Wegtransformieren“ funktioniert in einer 1+1 dimensionalen Raumzeit für die QED und QCD. Die Argumentation lautet der Einfachheit halber etwas anders als oben.

Zunächst verwendet man die axiale Eichung

A₁ = 0

Man betrachtet nun das Gaußsche Gesetz

∇E - ρ = 0

In der o.g. Eichung lautet dies in einer Raumdimension

∂₁(∂₀A₁ - ∂₁A₀) - ρ = 0

Aufgrund der gewählten Eichung erhält man

- ∂₁²A₀ - ρ = 0

Dies ist eine zeitunabhängige Differentialgleichung, die man mittels einer Greenschen Funktion lösen kann:

A₀(x) = A₀[ρ] = ∫ dy G(x-y) ρ(y)

Einsetzen in den Wechselwirkungsterm

V = ∫ dx A₀ρ

der Hamiltonfunktion liefert

V = ∫ dx dy ρ(x) G(x-y) ρ(y)

Die Greensche Funktion G(x-y) liefert gerade das Coulomb-Potential!

In 1+1 Dimensionen gilt G(x) ~ |x|, in 3+1 Dimensionen das bekannte G(x) ~ 1/|x|. In 3+1 Dimensionen bleiben noch zwei transversale, dynamische Polarisationen übrig, nämlich A₂, A₃; diese koppeln auch an die entsprechenden Komponenten des Stromes j. In 1+1 Dimensionen wird jedoch A₁ mit der Eichung A₁ = 0 sowie A₀ mit der expliziten Lösung A₀[ρ] vollständig eliminiert, d.h. hier existiert kein dynamisches elektromagnetisches Feld.

Die Argumentation für die QCD ist komplizierter, die Abzählung der Freiheitsgrade bleibt jedoch gleich.

In 3+1 Dimensionen gilt: das Vektorpotential A hat zunächst vier Komponenten. Die Eichung eliminiert eine Komponente, die Lösung des Gaußschen Gesetzes eliminiert eine weitere Komponente. Es verbleiben zwei dynamische Polarisationen.
__________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
Mit Zitat antworten
  #6  
Alt 17.03.19, 16:07
Hawkwind Hawkwind ist offline
Singularität
 
Registriert seit: 22.07.2010
Ort: Rabenstein, Niederösterreich
Beitr?ge: 3.057
Standard AW: Eichbosonen

Zitat:
Zitat von TomS Beitrag anzeigen
„Wegtransformieren“ funktioniert in einer 1+1 dimensionalen Raumzeit für die QED und QCD.
...
Okay, aber nicht komplett: die null-te Komponente des Feldes bleibt ja bestehen.

IIRC, sind Theorien in 1+1 Dimensionen eine beliebte "Spielwiese" um Probleme wie Quark-Confinement zu untersuchen. Sie eignen sich anscheinend besonders zur Untersuchung nicht-perturbativer Effekte?
Mit Zitat antworten
  #7  
Alt 17.03.19, 16:48
Bernhard Bernhard ist offline
Moderator
 
Registriert seit: 14.06.2017
Beitr?ge: 2.635
Standard AW: Eichbosonen

Zitat:
Zitat von Hawkwind Beitrag anzeigen
Das hieße ja, du könntest die entsprechende Wechselwirkung wegtransformieren, also "nein".
Nimm als Eichfunktion in der ED z.B. f := a*ct + b*x + c*y + d*z. Der Gradient ist dann gleich (a, b, c, d) und damit komplett frei wählbar. Damit kann man dann jedes endliche Potential an mindestens einem Punkt komplett wegtransformieren, ohne jedoch dabei die Physik zu verändern.
__________________
Freundliche Grüße, B.
Mit Zitat antworten
  #8  
Alt 17.03.19, 23:52
Benutzerbild von TomS
TomS TomS ist offline
Singularität
 
Registriert seit: 04.10.2014
Beitr?ge: 3.124
Standard AW: Eichbosonen

Zitat:
Zitat von Hawkwind Beitrag anzeigen
Okay, aber nicht komplett: die null-te Komponente des Feldes bleibt ja bestehen.
Aber sie wird zu einem rein fermionischen Term, in dem nur noch die Ladungsdichte auftritt. Das eigtl. dynamische elektromagnetische Feld ist verschwunden. Wenn du den Hamiltonian hinschreibst, sind keine Erzeuger oder Vernichter für Photonen mehr da.

Zitat:
Zitat von Hawkwind Beitrag anzeigen
IIRC, sind Theorien in 1+1 Dimensionen eine beliebte "Spielwiese" um Probleme wie Quark-Confinement zu untersuchen. Sie eignen sich anscheinend besonders zur Untersuchung nicht-perturbativer Effekte?
Sie sind super-renormierbar und teilweise exakt lösbar. Man erhält einen exakten Wert für das Quark-Kondensat, schwach wechselwirkende Pionen mittels Bosonisierung, ...
__________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.

Ge?ndert von TomS (17.03.19 um 23:55 Uhr)
Mit Zitat antworten
Antwort

Lesezeichen

Themen-Optionen
Ansicht

Forumregeln
Es ist Ihnen nicht erlaubt, neue Themen zu verfassen.
Es ist Ihnen nicht erlaubt, auf Beitr?ge zu antworten.
Es ist Ihnen nicht erlaubt, Anh?nge hochzuladen.
Es ist Ihnen nicht erlaubt, Ihre Beitr?ge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.

Gehe zu


Alle Zeitangaben in WEZ +1. Es ist jetzt 15:17 Uhr.


Powered by vBulletin® Version 3.8.8 (Deutsch)
Copyright ©2000 - 2024, vBulletin Solutions, Inc.
ScienceUp - Dr. Günter Sturm